The wave-induced solute flux from submerged sediment

نویسندگان

  • Christopher Earls Brennen
  • Jörg Imberger
چکیده

The issue of the transport of dissolved nutrients and contaminants between the sediment in the bottom of a lake or reservoir and the body of water above it is an important one for many reasons. In particular the biological and chemical condition of the body of water is intricately linked to these mass transport processes. As the review by Boudreau (Rev Geophys 38(3):389–416, 2000) clearly demonstrates those transport processes are very complex involving mechanisms as diverse as the wave-induced flux between the sediment and the overlying water and the effect of burrowing animals on the transport within the sediment as well as basic diffusion mechanisms. The present paper focuses on one facet of these transport processes; we re-examine the balance of diffusion and wave-induced advection and demonstrate that the wave-induced flux of a solute from submerged sediment is not necessarily purely diffusive as suggested by Harrison et al. (J Geophys Res 88:7617–7622, 1983) but can be dominated by a mean or time-averaged flux induced by the advective fluid motion into and out of the sediment caused by the fluctuating pressure waves associated with wave motion. Indeed along the subtidal shoreline where the fluctuating bottom pressures are greatest, wave-induced advection will dominate the mean, time-averaged transport of solute into or out of the sediment as suggested in the work of Riedl et al. (Mar Biol 13:210– 221, 1972). However, the present calculations also indicate that this advective flux decreases rapidly with increasing depth so that further away from the shoreline the advective flux becomes negligible relative to the diffusive flux and therefore the latter dominates in deeper water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical modelling of induced rip currents by discontinuous submerged breakwaters

Submerged breakwaters are one of the shore protective structures. Any discontinuity in these breakwaters causes changes on current parameters including speed and water surface profile. In this paper, discontinuous submerged breakwaters were modelled to investigate the changes in the wave and flow pattern.To investigate the phenomenon, three models including a shore with constant slope, a shore ...

متن کامل

A numerical study of the effect of channel spacers on the performance of cross-flow forward osmosis membrane modules

In this paper, we perform two-dimensional simulations of cross-flow forward osmosis (FO) membrane modules in the presence of draw and feed channel spacers. For this purpose, the equations corresponding to the conservation of mass, momentum, and convection-diffusion for the mass fraction of solute are solved using a commercial finite volume flow solver. We consider six configurations of channel ...

متن کامل

مدل سازی امواج برخوردی به موج شکن مستغرق با استفاده از روش المان مرزی

The principle included in construction of submerged breakwater is to protect beach from morphological changes and the sediment transport against incoming waves. In the present study, boundary element method (BEM) is employed for solving the scattering problem of incident wave passing the vertical and inclined submerged breakwaters with rigid boundaries. The boundary element integral equation wi...

متن کامل

Experimental Investigation on the Deviated Sediment and Flow to Sediment Bypass Tunnels (SBTs) Using Submerged Plates

Sediment Bypass Tunnels (SBTs) are deviant channels that convey the current containing sediments from the upstream of the reservoir to the downstream of the dam. In this research, by applying submerged plates on the entrance of a 90-degree diversion channel for sediment transport, the effect of hydraulic parameters of flow and changes in the angle of plates on sediment transport and deviated fl...

متن کامل

The effect of bottom sediment transport on wave set-up

In this paper we augment the wave-averaged mean field equations commonly used to describe wave set-up and wave-induced mean currents in the near-shore zone, with an empirical sediment flux law depending only on the wave-induced mean current and mean total depth. This model allows the bottom to evolve slowly in time, and is used to examine how sediment transport affects wave set-up in the surf z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014